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Abstract 

Background: With the rapid progress of high-throughput sequencing technology, characterization of schizophrenia 
(SZ) with underlying probing of the gut microbiome can explore pathogenic mechanisms, estimate disease risk, and 
allow customization of therapeutic and prophylactic modalities. In this study, we compared the differences in gut 
microbial diversity and composition between 50 SZ subjects and 50 healthy matched subjects in Zhejiang, China via 
targeted next-generation sequencing (16S rRNA amplicon).

Results: Accordingly, the alpha diversity indices (observed species index, Shannon index, and Simpson index) of the 
gut microbiome in the healthy control group were higher than those in the SZ group. Additionally, principal coordi-
nate analysis and non-metric multidimensional scaling of beta diversity revealed that patients with SZ clustered more 
tightly than healthy controls. At the phylum level, we found that the abundance of Bacteroidetes and Proteobacteria 
in the SZ group was significantly increased. At the genus level, the relative abundances of Prevotella, Parabacteroides, 
and Sutterella were significantly higher, whereas the abundances of Faecalibacterium, Blautia, Lachnospira, Clostridium, 
Ruminococcus, and Coprococcus were lower than those in the healthy control group. Further analyses revealed that 
Succinivibrio, Megasphaera, and Nesterenkonia may serve as potential biomarkers for distinguishing patients with SZ 
from those in the control cohort.

Conclusions: This study profiled differences in gut microbiome diversity, taxonomic composition, and function 
between SZ and healthy cohorts, and the insights from this research could be used to develop targeted next-genera-
tion sequencing-based diagnoses for SZ.
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Introduction
The human gut microbiota, a complex ecosystem com-
prising 100 trillion microorganisms (bacterial species, 
fungi, and viruses) carrying over three million genes 
(gut microbiome), can influence human physiology, 
behavior, and health [1, 2]. It changes over time depend-
ing on the host’s genetic predisposition, age, behavior, 
dietary habits, antibiotic use, and living environment. 

Microorganisms located in the human gastrointestinal 
tract carry various functionalities, including the absorp-
tion of nutrients and minerals, the constructive synthesis 
of short-chain fatty acids (SCFAs) and vitamins, and the 
production of microbial metabolites. Converging evi-
dence suggests that differences in the human gut micro-
bial community contribute to various diseases, such as 
liver diseases, diabetes, inflammatory bowel disease, 
multiple sclerosis, colorectal cancer, and neuropsychi-
atric disorders [3–8]. In addition, a smaller number of 
studies have revealed predicted or actual functional alter-
ations in microbial genes or metabolic pathways directly 
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or indirectly associated with these diseases. Therefore, 
understanding the communication or signaling path-
ways involved in the interactions between humans and 
microbiota is essential for investigating pathogenic 
mechanisms, estimating disease risk, allowing the cus-
tomization of therapeutic modalities, monitoring thera-
peutic progress, and developing prophylactic strategies.

Since most intestinal microorganisms are difficult to 
culture, next-generation sequencing (NGS) platforms 
with high throughput, read length, sensitivity, specificity, 
precision, and accuracy have been widely applied to char-
acterize microbial composition. To increase the sensitiv-
ity of microbial identification and overcome the dilemma 
of amplifying low levels of microbial sequences, the pro-
cess of enrichment for target and interesting sequences 
(16S rRNA, 18S rRNA, 23S rRNA [9] and internal tran-
scribed spacer) can be performed via polymerase chain 
reaction (PCR) before high-throughput sequencing 
[9–12]. Although targeted next-generation sequencing 
(tNGS) only directly characterizes bacterial taxonomy, 
it is a cost-effective option for exhaustively covering the 
biodiversity (measuring the maximal dynamic range 
of relative abundance) of many samples via minimal 
sequencing. Such a powerful alternative has strongly con-
tributed to various novel discoveries in the past decade, 
helping us to survey and characterize the gut microbi-
ome from the human gut, soil and oceans [13–15]. More 
importantly, bioinformatics analysis may be best suited to 
explore predicted or actual microbial functions and met-
abolic pathways.

Schizophrenia (SZ) is a serious psychiatric disorder 
with a global lifetime prevalence of 0.4% and a heritabil-
ity of around 0.81 (confidence interval, 0.73–0.90) [16, 
17]. The marked symptoms are mainly divided into five 
domains: hallucinations, delusions, disorganized think-
ing (speech), grossly disorganized, and abnormal human 
behaviors. Although the physiological phenomenon of 
SZ has not yet been explored or explained, patients diag-
nosed with SZ are frequently characterized by psychotic 
symptoms, poor social functioning, and a poor quality of 
life. For molecular diagnosis of SZ patients, accumulat-
ing evidence of NGS indicates that alterations in micro-
bial diversity and taxonomic composition in the human 
gut are widely observed in SZ patients compared with 
healthy matched controls, which greatly promotes the 
development of biomarkers [18–20]. However, we are 
in the way of completely distinguishing normal micro-
biota from that present in SZ or recognizing how its sub-
stantial metabolic pathways act on health. In addition, 
there is intensive and extensive bidirectional signaling 
between the gut microbiota and central nervous system 
through the gut-brain axis [21]. This process strongly 
correlates with neuronal, endocrine, and immunological 

mechanisms, which allow the gut microbiota to influence 
various human psychiatric status and homeostasis. Thus, 
it is necessary to decipher the content, diversity, and 
function of the gut microbiota to evaluate therapeutic 
opportunities and strategies in patients with SZ.

In this study, we focused on investigating and charac-
terizing the differences in gut microbial diversity and tax-
onomic composition between people with SZ and healthy 
people. In addition, we predicted the genetic potential of 
the gut microbiota and elucidated how functional dif-
ferences affect the physiological processes within the 
human gut. We aimed to present a comprehensive insight 
into the predicted or actual pathogenic mechanism of the 
human gut microbiota of SZ, with a particular emphasis 
on the potential of microbe-based diagnostic biomarkers.

Materials and methods
Study population and sample collection
Briefly, 100 men between the ages of 20 and 58  years 
participated in this study. And 50 patients with SZ were 
recruited from Lishui City Second People’s Hospital 
(Zhejiang, China), and 50 healthy matched participants 
(NC group) were recruited from the same province. SZ 
was diagnosed according to symptoms including delu-
sions, disorganization in the form of thought, halluci-
nations, impaired attention, loss of motivation, blunted 
emotional expression, and bizarre behaviour which based 
on the International Statistical Classification of Diseases 
and Related Health Problems, 10th Revision (ICD-10, 
World Health Organization). Symptoms must be pre-
sent for at least one month, and the manifestation caused 
by other health conditions and substance or medication 
use was excluded. The patients were selected only if the 
severity of schizophrenia met the standard of ICD-10. 
Furthermore, the dosage of antipsychotic medication 
was stable within 3 months before sample collection. All 
eligible subjects without genetic disorders maintained a 
regular diet and aerobic exercise and refused to take anti-
biotics. Prior to the study, all eligible participants and 
their guardians received a full explanation of the study 
and provided written informed consent.

Both SZ and NC subjects were provided with Stool 
Collection Tube (Simgen, Hangzhou, China) and pro-
vided with the detailed manufacturer’s protocol for col-
lecting fresh fecal samples. All samples were stored at 
-80 °C.

DNA extraction and sequencing
Before DNA extraction, the samples were pre-processed 
according to the 16S rRNA Earth Microbiome Proto-
col (earthmicrobiome.org). Then, gDNA was extracted 
from samples using the Omega Bio-tek Stool DNA Kit 
(Omega Bio-Tek, Doraville, CA, USA) according to 
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the manufacturer’s instructions. Additional positive 
and negative DNA controls were included so that sam-
ple exclusion based on read counts could be calculated. 
Thereafter, the quality of the DNA was evaluated using 
agarose gel electrophoresis and PicoGreen assay (Thermo 
Fisher Scientific, Cleveland, OH, USA). Finally, the DNA 
was stored at − 20 °C before sequencing.

First, 341f (5’-CCT AYG GGRBGCASCAG-3’) and 
806r (5’-GGA CTA CNNGGG TAT CTAAT-3’) barcoded 
primers were designed using Oligo software (v7.0) [22], 
validated using Primer-BLAST (https:// www. ncbi. nlm. 
nih. gov/ tools/ primer- blast/), and synthesized by Sangon 
Biotech (Shanghai, China). Second, 16 s amplicons were 
generated via PCR based on a method described in a pre-
vious work [23]. The quality of the amplicons was evalu-
ated using agarose gel electrophoresis and PicoGreen 
assay before cleaning with the Agencourt AMPure XP 
PCR purification kit (Beckman Coulter, Brea, CA, USA). 
Amplicon library amplification was performed using 
Nextera XT DNA Sample Prep (Illumina, San Diego, CA, 
USA). Then, the amplicon library was cleaned once with 
AMPure beads, and DNA concentration was measured 
on a Qubit fluorometer (Invitrogen, Carlsbad, CA, USA). 
Paired-end sequencing was performed on a MiSeq plat-
form (Illumina, San Diego, CA, USA) using the MiSeq 
Reagent Kit v3 (Illumina, San Diego, CA, USA), gener-
ating 300  bp reads per end. Raw sequencing files were 
uploaded and analyzed using the MiSeq Reporter (Illu-
mina, San Diego, CA, USA) for further analysis.

Bioinformatic data processing
The quality of raw sequencing data was assessed using 
FastQC v0.11.3 (http:// www. bioin forma tics. babra ham. 
ac. uk/ proje cts/ fastqc). To generate high-quality sequenc-
ing data, low-quality reads and Illumina adapters were 
excluded using Trimmomatic v0.36 [24]. Paired reads 
were merged and assembled using FLASH v1.2.11 
with default settings [25]. Operational taxonomic units 
(OTUs) were defined as sequences with at least 85% simi-
larity against the Greengenes database using the UClust 
clustering algorithm (http:// drive5. com/ usear ch/) fol-
lowing the close-reference method in QIIME v1.9.1 [26, 
27]. Amplicon sequence variants (ASVs) were identified 
using the Divisive Amplicon Denoising Algorithm 2 [28]. 
Taxonomic assignments of ASV representative sequences 
were performed with a confidence threshold of 0.8–1.0, 
using a pre-trained Naive Bayes classifier, which was 
trained on the Ribosomal Database Project classifier 
v11.5 [29]. Ordination was performed using principal 
component analysis (PCA) with the vegan function in the 
R package v4.0.2.

To account for both abundance and evenness, alpha 
diversity analyses, including the Observed Species index, 

Shannon diversity index [30] and Simpson diversity index 
[31] were performed using QIIME v1.9.1 [27]. Beta diver-
sity was calculated using Bray–Curtis dissimilarity [32] 
and unweighted UniFrac [32, 33]. To visualize the simi-
larity between samples, output matrices were ordinated 
using principal coordinate analysis (PCoA) and visual-
ized using EMPeror [34]. Non-metric multidimensional 
scaling (NMDS) was computed for each sample based on 
the total beta diversity using the R package v4.0.2 (vegan). 
Analysis of similarities (ANOSIM) and indicator value 
analysis were performed using R package v4.0.2 (vegan 
and labdsv), respectively. Venn diagrams illustrating the 
genera common to all samples were produced using the 
Venn program v1.6.16. For functional community profil-
ing, Tax4Fun was evaluated using QIIME v1.9.1 with the 
SILVA database extension [27, 35]. The key was to com-
pare the 16S rRNA gene sequencing data with the KEGG 
database to achieve functional annotation [36].

Statistical analysis
Participant demographic and clinical characteristics were 
summarized and analyzed using the Student’s t-test and 
chi-square test for continuous and discrete variables, 
respectively. Group significance (Welch’s t-test) and post-
hoc analyses (false discovery rate and Bonferroni correc-
tion) were performed to identify ASVs that differed in 
abundance between the healthy peri-implant sites and 
those with peri-implantitis. Statistics and plots were per-
formed using R software v4.0.2. Statistical significance 
was set than 0.05.

Results
Sampling information
Based on the inclusion and exclusion criteria, 50 male 
patients with SZ and 50 healthy male individuals were 
recruited. The demographic and clinical characteristics 
of both the groups are presented in Table 1. There were 
no significant differences in age (p = 0.1311), weight 
(p = 0.1811), and body mass index (BMI, p = 0.4817). 
However, the NC group had a significantly greater height 
than the SZ group (p = 0.0460). In terms of BMI classifi-
cation, there were statistical differences between the thin 
(BMI < 18.5, p = 0.0412) and obese (BMI ≥ 28, p = 0.0412) 
groups. Finally, the distribution of antipsychotic use of 
patients with SZ mainly consisted of risperidone (28%), 
clozapine (20%), olanzapine (40%), and quetiapine (24%), 
and 26% of them took two types of antipsychotic drugs 
during clinical therapy.

Microbial diversity
A total of 8,911,266 reads (1,869,170,520 bases) were 
obtained from the healthy control group, while 50 micro-
biome samples of SZ subjects consisted of 5,816,276 
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reads (1,320,847,922 bases). After quality filtration, 
adapter reduction, and paired-read assembly, we 
obtained 4,376,659 raw tags, 4,321,992 effective tags, 
and 21,507 OTUs in healthy control group, ranging 
from 23,459 to 414,271, 23,392 to 409,960, and 115 to 
844 for each sample. Additionally, there were 2,667,140 
raw tags, 2,645,060 effective tags, and 12,230 OTUs in 
the SZ group, ranging from 19,503 to 68,895, 19,387 to 
67,766, and 101 to 516 for each sample, respectively. Both 

the rarefaction curve (Figure S1 A) and rank abundance 
curve (Figure S1 B) confirmed the validity of the high-
throughput sequencing data and revealed that the abun-
dance of the microbial community varied depending on 
the sample of individuals.

To characterize the richness and diversity of the micro-
bial community, we calculated alpha indices for each 
sample. There were significant changes in the observed 
species index between the SZ and NC groups (Fig.  1A, 

Table 1 Demographic and clinical characteristics of participants

BMI Body mass index
a Means Student’s t-test
b Means chi-square test (χ2 value)

SZ groups (n = 50) NC groups (n = 50) t or χ2 p value

Age 39.9 37.2 1.522a 0.1311

Weight (kg) 67.2 69.6 1.347a 0.1811

Height (cm) 169.8 171.4 2.021a 0.046

BMI 23.3 23.7 0.7063a 0.4817

BMI classification [n (% BMI < 18.5)] 4 (8) 0 (0) 4.167b 0.0412

BMI classification [n (% 18.5 ≤ BMI < 24)] 27 (54) 27 (54) 0b 1

BMI classification [n (% 24 ≤ BMI < 28)] 15 (30) 23 (46) 2.716b 0.0993

BMI classification [n (% 28 ≤ BMI)] 4 (8) 0 (0) 4.167b 0.0412

Hepatitis B [n (%)] 1 (2) 0 (0) 1.010b 0.3149

Antibiotic use [n (% in past 3 months)] 0 0 - -

Antipsychotic use 0 0 - -

Risperidone [n (%)] 14 (28) 0 (0) 16.28b 5.00E-05

Clozapine [n (%)] 10 (20) 0 (0) 11.11b 8.60E-04

Olanzapine [n (%)] 20 (40) 0 (0) 25.00b 0

Quetiapine [n (%)] 12 (24) 0 (0) 13.64b 2.20E-04

Sulpiride [n (%)] 1 (2) 0 (0) 1.010b 0.3149

Aripiprazole [n (%)] 3 (6) 0 (0) 3.093b 0.0786

Perphenazine tablets [n (%)] 1 (2) 0 (0) 1.010b 0.3149

Fig. 1 Alpha-diversity indices (A: Observed Species index, B: Shannon index, C: Simpson index) for the OTUs in the gut microbiota of SZ and NC 
groups
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p = 6.88e-07), Shannon index (Fig. 1B, p = 5.94e-05), and 
Simpson index (Fig. 1C, p = 6.85e-04) of alpha diversity. 
Conversely, OTU-based beta diversity is a comparative 
analysis of microbial community composition between 
samples. We observed that the PCoA (Fig.  2A) and 
NMDS-based map (Fig. 2B, stress = 0.093) of unweighted 
UniFrac metrics revealed that SZ subjects were tightly 
clustered when NC subjects formed distinct clusters 
(within-group distance comparison). In addition, some 
NC clusters were close to those of the SZ group. Moreo-
ver, the ANOSIM analysis (Fig.  2C) indicated that the 
microbial community structure was significantly differ-
ent (unweighted UniFrac, R = 0.152, p = 0.001) between 
the two groups.

Differences in taxonomic composition
To better understand OTU information and taxonomic 
annotation, tags and OTUs were calculated and sum-
marized. As is shown in Fig.  3A, the predominant 
bacteria in the NC group were Firmicutes (57.43%), 

Bacteroidetes (33.08%), Proteobacteria (4.55%), Actino-
bacteria (2.31%), and Fusobacteria (1.83%), whereas the 
SZ cohort was dominated by Firmicutes (42.93%), Bac-
teroidetes (42.03%), Proteobacteria (9.04%), Fusobacteria 
(2.55%), and Actinobacteria (1.72%). When the relative 
abundances of bacterial phyla were compared (Figure 
S2A), Bacteroidetes (p = 4.11e-03) and Proteobacteria 
(p = 0.0371) were found to be more abundant in the SZ 
than in the NC group. In terms of Firmicutes levels, the 
SZ group showed a significant decrease (p = 3.98e-05) 
compared to the NC group. At the genus level (Fig. 3B), 
the NC group was mainly assigned to Bacteroides 
(24.26%), Faecalibacterium (12.59%), Roseburia (6.89%), 
Prevotella (4.43%), Megamonas (3.31%), Blautia (3.13%), 
Lachnospira (2.58%), Clostridium (2.30%), Ruminococcus 
(1.99%), and Coprococcus (1.81%). The most abundant 
genera in the SZ group were Bacteroides (25.66%), fol-
lowed by Prevotella (10.24%), Faecalibacterium (7.95%), 
Roseburia (4.93%), Succinivibrio (3.68%), Megamonas 
(2.96%), Parabacteroides (2.49%), Dialister (2.00%), 

Fig. 2 Unweighted UniFrac PCoA (A) and two-dimensional NMDS (B) plots comparing sample distribution between the two cohorts. C 
Unweighted UniFrac ANOSIM test for the16S rRNA gene. Samples were compared using peak height as a measure of abundance. Control indicates 
the NC group. Case indicates the SZ group

Fig. 3 Microbial composition at phylum level (A) and genus level (B). Control indicates the NC group. Case indicates the SZ group
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Sutterella (1.67%), and Clostridium (1.33%). Compared 
to healthy cohort (Figure S2B), the relative abundance 
of Prevotella (p = 0.0157), Parabacteroides (p = 0.0342), 
and Sutterella (p = 0.0365) was significantly higher in 
the SZ cohort. However, Faecalibacterium (p = 4.25e-
03), Blautia (p = 3.04e-05), Lachnospira (p = 6.36e-03), 
Clostridium (p = 0.0287), Ruminococcus (p = 0.0380), 
and Coprococcus (p = 0.0258) levels were higher in the 
healthy cohort.

The Venn diagram illustrates the distribution of shared 
and specific genera to identify the candidate microbial 
biomarkers. As is shown in Fig. 4A and 4B, all individu-
als, irrespective of SZ patients and healthy persons, 
had in common 73 genera of the total members that 
were consistently detected. In addition, we calculated 
the indicator value to identify candidate biomarkers for 
microbiological diagnosis. Succinivibrio (p = 0.001), 
Megasphaera (p = 0.001), and Nesterenkonia (p = 0.005) 
were more enriched in the SZ group, whereas Blau-
tia (p = 0.001), Paracoccus (p = 0.001), Adlercreut-
zia (p = 0.001), Enhydrobacter (p = 0.001), Eggerthella 

(p = 0.002), Corynebacterium (p = 0.002), Oxalobacter 
(p = 0.002), and Finegoldia (p = 0.005) in healthy control 
subjects (Fig. 4C).

Functional differences of microbiome
Tax4Fun analysis was performed to reveal and explore 
the differences in the function of the gut microbiome 
between the SZ and NC groups. As is shown in Fig. 5, 
the metabolism of terpenoids/polyketides (p = 4.37e-
07), excretory system (p = 9.50e-05), energy metabo-
lism (p = 2.08e-04), cancers (p = 3.93e-04), circulatory 
system (p = 2.87e-03), nervous system (p = 4.44e-03), 
signal transduction (p = 5.49e-03), and xenobiotic bio-
degradation/metabolism (p = 0.0220) in the SZ group 
showed an upward trend compared to that in the NC 
group. However, there were significant decreases in 
transcription (p = 1.33e-03), nucleotide metabolism 
(p = 2.10e-03), immune diseases (p = 3.42e-03), rep-
lication/repair (p = 5.46e-03), membrane transport 
(p = 0.0131), and translation (p = 0.0139) in the SZ 
group. Next, we analyzed the correlation between the 

Fig. 4 A Venn diagram of shared and specific genera. B Venn diagram of upset. C Indicator value of specific genera. Control indicates the NC group. 
Case indicates the SZ group
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relative abundance of the altered genera and differen-
tially functional pathways. Faecalibacterium, Rumi-
nococcus, Coprococcus, Adlercreutzia, Blautia, and 
Paracoccus were positively associated with nucleo-
tide metabolism, transcription, replication/repair, 
and translation (Fig.  6). Meanwhile, Parabacteroides 
was positively correlated with the metabolism of ter-
penoids/polyketides, the nervous system, excretory 

system, and circulatory system when Prevotella had 
a positive effect on cancers. In contrast, Coprococcus, 
Corynebacterium, and Adlercreutzia were negatively 
associated with signal transduction, the nervous sys-
tem, and the circulatory system. Moreover, Blautia 
was negatively correlated with energy metabolism and 
cancer.

Fig. 5 Significant differences (P < 0.05) in KEGG pathways for gut microbiota in SZ (case) and NC (control) groups. The bars represent the average 
relative abundance of functional pathways, having significant differences between the two groups, with 95% confidence interval distribution and p 
value shown on their right

Fig. 6 Heat-map of correlation between the relative abundances of the alter genera and the differentially relative abundance metabolism pathway. 
Colors indicate the Pearson correlation coefficients
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Discussion
In our study, microbial diversity and composition in the 
gut of patients with SZ and healthy control subjects from 
Zhejiang, China, were evaluated using tNGS of the V3 
and V4 regions of the 16S rRNA gene with bioinformat-
ics analysis. Our first main finding was that the micro-
bial diversity of the human gut was altered between the 
SZ and NC groups. The alpha diversity indices (observed 
species index, Shannon index, and Simpson index) of the 
gut microbiome in the NC group were higher than those 
in the SZ group, indicating a higher richness and diver-
sity of the microbial community in healthy subjects. It 
is typically observed that the scores of alpha-diversity in 
psychiatric populations decrease in SZ patients [37, 38]. 
Generally, a high index of alpha diversity is considered 
as a marker of a healthy status. In summary, the lower 
alpha diversity suggested an overall abnormal microbial 
ecology within patients here and was linked to a range of 
chronic human diseases [39]. Additionally, beta diversity 
metrics were considered using nonphylogenetic methods. 
The resultant beta diversity showed that patients with SZ 
clustered tightly when the clusters of NC subjects were 
spread more widely across the PCoA and NMDS spaces. 
Therefore, the OTU definition and taxonomic annotation 
were performed for further analyses.

The intestinal microbiota community structure at the 
phylum and genus levels was mainly analyzed. Regard-
less of age, weight, height, BMI, and BMI classification, 
the gut microbial composition of normal people and 
patients with SZ mainly consisted of five major phyla: 
Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, 
and Fusobacteria. This result is consistent with previous 
researches [18, 40, 41]. However, the most important 
alteration was that the relative abundance of Bacteroi-
detes (genus: Prevotella and Parabacteroides) and Pro-
teobacteria (genus: Sutterella) was obviously higher in 
patients with SZ than in healthy controls. In contrast, 
we found that the proportion of Firmicutes (genus: Fae-
calibacterium, Blautia, Lachnospira, Ruminococcus, and 
Coprococcus) and Actinobacteria (genus: Corynebac-
terium and Adlercreutzia) was lower in SZ subjects. An 
increasing number of studies have validated that Faecali-
bacterium, Blautia, Lachnospira, Ruminococcus, Coproc-
occus, Corynebacterium, and Adlercreutzia are beneficial 
phylotypes. The relationship between bacterial abun-
dance and function was analyzed and discussed. Our 
results revealed that Faecalibacterium, Blautia, Rumi-
nococcus, Coprococcus, Adlercreutzia, and Paracoccus 
regulated diverse molecular processes, such as nucleo-
tide metabolism, transcription, replication/repair, and 
translation. As is widely known, nucleotide metabolism 
is required for nucleic acid synthesis, DNA proliferation, 
DNA repair, and RNA production to maintain genome 

stability. Besides, RNA is translated into proteins with 
the correct structure and is involved in cell proliferation, 
maintenance, repair, and regulation at different stages of 
the cell cycle.

The decrease in Coprococcus, Corynebacterium, and 
Adlercreutzia resulted in an upward trend in signal 
transduction, nervous system, and circulatory system 
in SZ subjects. More seriously, the decreased level of 
Blautia caused an upregulated status of cancer. It has 
been reported that the decrease in Blautia, Lachnospira 
Coprococcus, Corynebacterium, and Adlercreutzia may 
be caused by antipsychotic medication and are strongly 
associated with a reduction in SCFAs [42]. SCFAs are 
capable to modulate a variety of immune and epigenetic 
pathways, such as barrier function in intestinal epithelial 
cells, obesity-associated inflammation, release of inter-
leukin-6 and tumor necrosis factor-α from macrophages, 
cytokine-associated nuclear factor kappa-B signaling 
pathway [43] and inhibition of histone deacetylase [43–
46]. These biological pathways have also been examined 
and validated to be dysregulated in SZ. Although SCFAs 
have anti-inflammatory properties, the central role of 
SCFAs in the brain and their relationship with neurobio-
logical factors and pathways, including neurotransmitter 
circuits, neurotrophic factors, and other brain metabo-
lites, remains largely unknown.

The most important limitation of this study was its 
small sample size, which must be acknowledged. For 
example, only 100 male subjects from the same area par-
ticipated in this study, and one microbiome sample was 
tested per individual. Generally, microbial diversity and 
composition fluctuate across sex, area, time, and other 
factors [23, 47]. Likewise, we did not match the gut 
microbiome or control for smoking prevalence in our 
analyses. Patients with SZ are markedly prone to smoke 
tobacco and it has been suggested that biological fac-
tors may underlie the association between this disorder 
and tobacco use. Moreover, mechanistic studies on ani-
mal and cellular aspects are absent. All these statuses 
limited the extent to which we could statistically explore 
predicted or actual confounds on the differences in the 
microbiome and the power of correlational analyses 
between microbiota and functional differences. There-
fore, these results should be considered as preliminary.

Limitations
Although there are several limitations to our study, we 
still make a critical contribution to the monitoring of 
SZ. Based on the taxonomic community, the Venn dia-
gram showed that 11 genera had the potential to serve 
as vital diagnostic biomarkers for distinguishing SZ. To 
further validate the biomarkers that contributed sig-
nificantly to the prediction performance, we calculated 
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the indicator value and performed Welch’s t-test. The 
predictive model for Succinivibrio, Megasphaera, and 
Nesterenkonia at the genus level revealed remarkable 
discriminating power. This microbial diagnostic strat-
egy is highly accurate and efficacious. In the future, we 
might be able to assist psychiatric physicians in diag-
nosing SZ and predicting disease progression by meas-
uring the tNGS-based microbiota.

Future suggestions
In conclusion, we have confirmed that there are some 
differences in the composition and function of the gut 
microbiome between patients with SZ and healthy 
individuals, and the insights from this research could 
be used to develop a tNGS-based diagnosis for SZ. In 
the future, it is likely that microbial biomarkers will 
become fast and highly sensitive tools for the detec-
tion and diagnosis of SZ disease. Further well-designed 
trials are needed to validate the results and conclude 
causal associations using animal models in a clinical 
setting.
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